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approach for optimization of effective single-particle Hamiltonians with parameters.

DOI: 10.1103/PhysRevB.82.115108 PACS number�s�: 71.15.Nc, 02.70.Ss, 64.70.�p, 71.20.�b

I. INTRODUCTION

Steady increase in supercomputer performance over the
last three decades stimulates development of very accurate
electronic-structure methodologies that provide detailed un-
derstanding of ever larger and more complex systems. Dif-
fusion Monte Carlo �DMC� method1,2 is one of the prime
examples of these advanced many-body approaches. It uses a
stochastic process to refine a given many-body wave func-
tion ��T� toward the actual ground-state solution ��0�. The
antisymmetry of the wave function with respect to fermionic
degrees of freedom is usually maintained by imposing the
so-called fixed-node condition. In practice, it means that the
nodal surface �the subset of configuration space where the
many-body wave function vanishes� is restricted to be the
same as in the initial guess ��T� throughout the entire sto-
chastic simulation. The basic premise is that high accuracy is
achieved even when relatively simple functional forms are
employed for ��T�.

The impact of the fixed-node approximation has been in-
tensively studied in few-electron atoms and molecules as
well as in homogeneous systems, where the performance of
the DMC method with increasing accuracy of the trial wave
function ��T� is relatively well mapped out.3–8 Applications
to solids are not nearly as numerous, and hence the influence
of the fixed-node condition in crystalline settings is much
less examined. Evaluation of bulk properties necessarily in-
volves extrapolation to the thermodynamic limit, which de-
creases the amount of computational resources available for
exploration of rather subtle fixed-node errors. Consequently,
only the simplest trial wave functions, having the Slater-
Jastrow form, are typically employed. These wave functions
have nodal surfaces defined by single-particle orbitals, and
therefore they correspond to mean-field nodes. The subject
of our study are the fixed-node errors associated with such
trial functions when they are applied to simple transition-
metal oxides in crystalline phases.

II. FIXED-NODE DIFFUSION MONTE CARLO METHOD

The fixed-node diffusion Monte Carlo method calculates
expectation values of quantum-mechanical operators in the

ground state �as well as in certain excited states� of a many-

body Hamiltonian Ĥ. The DMC wave function is found by a
projection,

��D� = lim
�→�

e−�Ĥ��T� , �1a�

that gradually increases the weight of the lowest-energy

eigenstate of Ĥ relative to all other states admixed in some
initially guessed wave function ��T�. Building on similarity
between the Schrödinger and the diffusion equations, the
projection is realized with the aid of a classical stochastic
process. The outcome of this simulation is a set of
3N-dimensional samples �Ri� distributed according to a prob-
ability distribution P�R�=�D�R��T�R� / ��D ��T�. Here R
= �r1 ,r2 , . . . ,rN� denotes coordinates of all N electrons com-

prising the investigated quantum system. The Hamiltonian Ĥ
is assumed to be spin independent, which prevents any spin-
flip processes to occur in Eq. �1a�, and hence the spins do not
enter the simulations as dynamical variables. The probabilis-
tic interpretation of P�R� is possible only if it is a positive
quantity. In the case of fermions, the projection as written in
Eq. �1a� does not fulfill this requirement, which must there-
fore be prescribed in the form of an additional condition

�D�R��T�R� � 0. �1b�

This step introduces the so-called fixed-node approximation
since the projection cannot reach the true ground state ��0� if
the fermionic nodes of the trial wave function ��T� differ
from �a priori unknown� nodes of the desired ground state.
Our primary aim is to explore the impact of this fixed-node
approximation for a particular functional form of the trial
wave function.

The set of N samples �Ri� acquired as a result of a DMC
simulation can be directly used to calculate the so-called
mixed estimates of the quantum-mechanical expectation
values,
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	 �Â�T��R�
�T�R�



=

1

N

i=1

N
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If the operator Â commutes with the Hamiltonian, the mixed
estimate equals the desired quantum-mechanical expectation

value, ��D�Â��T� / ��D ��T�= ��D�Â��D� / ��D ��D�. In gen-
eral, however, there is an error proportional to the difference
between ��D� and ��T� that can be reduced to the next order
using the following extrapolation:2

��D�Â��D�
��D��D�

= 2
��D�Â��T�
��D��T�

−
��T�Â��T�
��T��T�

+ O	� �D

���D��D�
−

�T

���T��T�
�2
 . �3�

The expectation value ��T�Â��T� / ��T ��T� is evaluated by
straightforward Monte Carlo integration and it is referred to
as the estimate of the variational Monte Carlo �VMC�
method.

III. TRIAL WAVE FUNCTIONS

We employ trial wave functions having the Slater-Jastrow
functional form, which is an antisymmetrized product of
single-particle orbitals �Slater determinant� multiplied by a
correlation factor that is symmetric with respect to pair-
electron exchanges. We can write

�T�R� = det���
↑�det���

↓�eJ�R,X�, �4�

where ��
↑ and ��

↓ are spatial parts of single-particle orbitals
that correspond to spin-up, respectively, spin-down elec-
tronic states. The vector X= �x1 ,x2 , . . . ,xM� encompasses po-
sitions of all M ions in the lattice. The expression in Eq. �4�
represents only a spatial component of the trial wave func-
tion corresponding to one particular spin configuration,
where electrons with labels 1 , . . . ,N↑ are in the spin-up state
and electrons with labels N↑+1, . . . ,N are in the spin-down
state. We can use this simplified form with fixed spin states
instead of the full wave function as long as neither the
Hamiltonian nor any other operator, expectation value of
which we intend to calculate, depend on electron spins.1 The
applications we consider involve only cases with zero total
spin, i.e., N is an even number and N↑=N↓=N /2.

The Jastrow correlation factor we use,

J�R,X� = 

i,j

f�ri − r j� + 

i,I

g�ri − xI� , �5�

contains one- and two-body terms, g and f , that are param-
etrized in the same way as in Ref. 9. This correlation factor
improves efficiency of the Monte Carlo sampling and accu-
racy of general expectation values calculated according to
Eq. �3�. Quality of the DMC total energy ED depends solely
on the accuracy of the nodal surface that is, given the func-
tional form of Eq. �4�, completely determined by the single-

particle orbitals ���
↑ ,��

↓�. Ideally, these orbitals would be pa-
rametrized by an expansion in a saturated basis with the
expansion coefficients varied to minimize the DMC total en-
ergy. Unfortunately, the stochastic noise and the computa-
tional demands of the DMC method make this route ex-
tremely inefficient in practice except, perhaps, in the case of
the simplest few-electron systems.

A more feasible alternative is to skip the DMC projection,
Eq. �1a�, and optimize the orbitals ���

↑ ,��
↓� with respect to a

simpler quantity than ED. For instance, the variational Monte
Carlo methodology can be utilized to minimize the varia-

tional energy EV= ��T�Ĥ��T� / ��T ��T�. The VMC optimiza-
tion of one-particle orbitals was successfully employed for
atoms and small molecules of the first-row atoms6,10,11 but
the method is still too demanding for applications to solids. It
is also not completely robust since an improvement of the
variational energy does not automatically guarantee an im-
provement of the fixed-node energy due to the limited para-
metric freedom of the trial wave function ��T�. This issue is
even more pronounced when the wave functions are not op-
timized with respect to the VMC energy but with respect to
another quantity, such as the energy variance.

To avoid the large number of variational parameters
needed to describe the single-particle orbitals, another family
of methods has been proposed. The orbitals in the Slater-
Jastrow wave function are found as solutions to self-
consistent-field �SCF� equations that represent a generaliza-
tion of the Hartree-Fock �HF� theory to the presence of the
Jastrow correlation factor.12–14 These methods were tested in
atoms as well as in solids within the VMC framework.12,15

Unfortunately, the wave functions derived in this way did not
lead to lower DMC energies compared to wave functions
with orbitals from the Hartree-Fock theory or from the local-
density approximation �LDA�.12,16 Taking into account our
results presented below it seems likely that the lack of ob-
served improvements in the fermionic nodal surfaces stems
from the fact that only applications to weakly correlated sys-
tems with just s and p valence electrons were considered so
far.

In this paper, we also use SCF equations as a means to
construct the one-particle orbitals but the parametric depen-
dence of these equations is introduced without any relation to
the actual Jastrow factor. The self-consistent-field equations
in question are Kohn-Sham equations corresponding to the
hybrid exchange-correlation functional PBE1w,17–19

Exc
PBE1w = wEx + �1 − w�Ex

PBE + Ec
PBE. �6�

Here Ex
PBE and Ec

PBE are exchange and correlation parts of the
PBE form20 of the generalized gradient approximation
�GGA�, and Ex is the exchange functional from the Hartree-
Fock theory evaluated with Kohn-Sham orbitals. The weight
w is in the range 0	w	1 and serves as a variational param-
eter with respect to which the fixed-node DMC energy is
minimized.

In the transition-metal oxides we study, it is understood
that exchange in GGA is underestimated21 whereas the “ex-
act” exchange from the Hartree-Fock theory overestimates
the real exchange mechanism as any screening effects are
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neglected.22,23 The hybrid density-functional theory �DFT�
provides an interpolating scheme between these two ex-
tremes. There are numerous examples in the literature illus-
trating that reasonable agreement between its predictions and
experimental observations can be achieved.24–27

Arguably, the single parameter introduced to the one-
particle orbitals represents only relatively constrained varia-
tional freedom compared to the approaches mentioned
above.6,10,11 On the other hand, the simplicity of the param-
eter space allows for direct optimization of the fixed-node
DMC total energy, and therefore the variations in the fermi-
onic nodal structure can be directly quantified. Initial appli-
cations of this strategy to molecules9,28 and in a more el-
ementary form also to solids29 were reported previously. In
the following sections, we perform the DMC optimization
for two compounds, MnO and FeO, and systematically ana-
lyze the variational freedom available within this method in
crystalline environments. Preliminary data leading to the re-
sults presented here were shown in Ref. 30.

IV. THERMODYNAMIC LIMIT

Crystals in our simulations are represented by periodically
repeated simulation cells of a finite size, in which the Cou-
lomb interaction energy is evaluated with the aid of the
Ewald formula.1,31 To calculate bulk quantities, one has to
perform an extrapolation to the thermodynamic limit �infinite
crystal volume�. Our main objective, however, is to compare
energies obtained for different trial wave functions in a given
simulation cell with fixed volume, and hence the size ex-
trapolation seems redundant. Indeed, the leading-order term
of the finite-size errors related to the long-range character of
the Coulomb interaction is a function of the average charge
density alone.32,33 Variation in single-particle orbitals does
not change this quantity, and these finite-size errors are there-
fore mostly irrelevant for our wave-function optimization
since they cancel out.

The Coulomb interaction is not the only cause of finite-
size biases in calculations performed in finite simulation
cells. There is another source of nonvanishing surface terms
that appear even if no two-body interaction is present in the
Hamiltonian.34 These can be brought to light as follows: the
statement “periodically repeated simulation cells” used
above refers to observable quantities and does not fully
specify the boundary condition for the phase of the wave
function. In the language of single-particle description of sol-
ids, different boundary conditions compatible with periodic-
ity of observables correspond to simulations being done at
different k points. Averaging over all k points from the first
Brillouin zone removes the dependence of the computed
quantities on the boundary conditions and in the case of non-
interacting particles it is equivalent to performing the ther-
modynamic limit. For Hamiltonians with particle-particle in-
teractions this correspondence is not exact but a very
substantial reduction in finite-size errors is observed
nevertheless.34

Comparison of trial wave functions at a single k point is
certainly a valid approach. On the other hand, variation in
the exchange-correlation functional in the Kohn-Sham equa-

tions modifies the resulting band structure in a generally non-
trivial k-dependent manner, see, for instance, Ref. 24 for il-
lustration. As a result, the minimization of the total energy
calculated at a single k point does not necessarily lead to the
same optimal weight w as does the minimization of the
k-averaged total energy. Since the latter is arguably a better
approximation of the thermodynamic limit, which is what we
are ultimately interested in, we work with the k-averaged
quantities.

V. MnO AT AMBIENT CONDITIONS

We start our investigations with manganese monoxide at
experimental equilibrium volume, V=21.7 Å3 /MnO. Calcu-
lations are performed for two lattice structures, both with
antiferromagnetic �AFM� ordering of magnetic Mn atoms:

B1 �symmetry group R3̄m, the so-called AFM-II state� and

B8 �symmetry group P3̄m1�. The former phase is the low-
temperature ground-state structure at atmospheric pressure
and the latter is a phase stable at high pressures.35 Since all
states investigated in this paper are antiferromagnetic, we
will often leave out this attribute.

Data were collected in simulation cells containing 16 at-
oms �eight Mn and eight O�. Atomic cores were replaced by
Hartree-Fock norm-conserving pseudopotentials within the
so-called localization approximation.36 Helium core was ex-
cluded from oxygen atoms37 and neon core from manganese
atoms,38 which left 168 valence and semicore electrons ex-
plicitly included in the simulations. The Monte Carlo calcu-
lations were performed with QWALK �Ref. 39� and the single-
particle orbitals were prepared in CRYSTAL2003.40 In both
codes, the orbitals were expanded in a Gaussian basis, com-
pleteness of which was verified against a converged basis of
linearized augmented plane waves as implemented in the
WIEN2K code.41 The basis-set benchmarks were performed
within DFT using the PBE-GGA exchange-correlation func-
tional. The Jastrow factor, Eq. �5�, was optimized for the
exact-exchange weight w=0.1 at the 
 point employing a
mixture of 95% VMC energy and 5% variance as a cost
function.39,42 The resulting correlation factor �one for each
simulation cell� was then used for all values of the weight w
at all k points without further reoptimization. Several tests
�see the Appendix for one of them� indicated that indepen-
dent optimization of the Jastrow factor for each weight and
at every k point would not change the final results within the
targeted statistical precision.

The acquired dependence of the DMC total energies on
the exact-exchange weight w is plotted in Fig. 1. Each en-
ergy value shown in the picture represents an average over
eight k points. Such average made within DFT differs from
the converged integral over the first Brillouin zone of the
simulation cell by less than the statistical error bars plotted in
the figure. Quadratic functions fitted through the DMC data
using the least-squares method lead to the optimal values of
the weight w listed in Table I. Drop of the total energy from
the pure PBE-GGA orbitals �⇔PBE1w=0� to the minimum is
�0.15 eV /MnO, and from the Hartree-Fock orbitals
�⇔” PBE1w=1� it is �0.2 eV /MnO. The dependence of the
fixed-node DMC total energy on the admixture of the exact
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exchange is weaker in the MnO solid than in the MnO mol-
ecule, where the gain from the Hartree-Fock to hybrid DFT
orbitals was observed as large as �0.6 eV.9 We attribute this
difference to a greater freedom of charge density to adapt in
the molecule than in the constrained solid-state environment.

The data collected so far can be utilized to evaluate quan-
tities of direct physical interest. The difference between the
optimized total energies provides a measure of relative sta-
bility of the investigated phases at the given volume. We find
that the B1 structure is lower in energy than the B8 structure
by 0.27�0.01 eV /MnO. The cohesive energy Ecoh of MnO
crystal can also be estimated. To this end, energies of iso-
lated Mn and O atoms need to be calculated, and the crys-
talline total energy has to be extrapolated to the infinite vol-
ume. We provide details of these steps in the Appendix. In
the end, we obtain Ecoh=9.29�0.04 eV that is in good
agreement with the value 9.5 eV derived from experimental
formation enthalpies.43 Our result differs from the earlier
DMC estimate44,45 9.40�0.05 eV, whose seemingly better
agreement with experiment is fortuitous and originates in
underestimation of the finite-size effects. The prior calcula-
tions were done in smaller simulation cells and only at a
single k point.

VI. ARE LARGE SIMULATION CELLS NECESSARY?

It was argued in Sec. IV that k-point averaging should
remove nearly all finite-size biases relevant to the optimiza-
tion of single-particle orbitals performed at a fixed volume. It
would certainly be beneficial if one could find the optimal
exact-exchange weight in a small simulation cell and only
then proceed with production runs in large cells.

To explore this possibility we have repeated the optimiza-
tion procedure in the primitive cell of the B1 AFM-II struc-
ture, which contains only four atoms �two Mn and two O�.
All other parameters were kept unchanged, except the num-
ber of k points employed in the averaging had to be substan-
tially increased—from 8 to 125—to achieve comparable
convergence.46 The necessity to enlarge the set of considered
k points introduces an extra technical complication since trial
wave functions corresponding to the majority of these k
points are complex valued. Consequently, we replace the
fixed-node DMC method with its natural generalization, the
so-called fixed-phase DMC.47 The fixed-phase condition re-
duces to the fixed-node condition for real-valued trial wave
functions.

The w dependence of the DMC total energy calculated in
the small simulation cell �Fig. 2� is similar but not com-
pletely identical to the behavior observed in the larger cell.
The minimum is shifted to a slightly lower weight w and the
E�w� curve raises a little slower with w decreasing toward
the pure PBE-GGA. It is plausible to assume that these dif-
ferences are a fingerprint of the residual Coulomb finite-size
effects.

VII. COMPRESSED FeO

Finally, we turn our attention to iron oxide subject to high
pressures. We revisit our earlier study of the phase transition
from the B1 AFM-II phase, stable at atmospheric pressure, to
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FIG. 1. �Color online� The DMC total energy of MnO at experi-
mental equilibrium volume �V=21.7 Å3 /MnO� for two distinct
structural phases: B1 AFM-II �red squares, solid line� and B8 AFM
�blue circles, dashed line�. Minima of the fits are chosen as refer-
ence energies for the respective phases. Also shown is the DMC
total energy of the B1 AFM-II phase obtained with the Hartree-
Fock orbitals �empty red square�.

TABLE I. Exact-exchange weight w leading to minimal DMC
total energies of several phases of MnO and FeO solids.

Compound Phase
V

�Å3 /XO� w

MnO B1 AFM-II 21.7 0.30�0.01

MnO B8 AFM 21.7 0.33�0.01

FeO B1 AFM-II 20.4 0.25�0.02

FeO B1 AFM-II 17.3 0.217�0.006

FeO iB8 AFM 17.0 0.156�0.003
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FIG. 2. �Color online� The DMC total energy of MnO �B1
AFM-II phase at V=21.7 Å3 /MnO� as a function of exact-
exchange weight w. Compared are data obtained in simulation cells
of two different sizes: 16 atoms �red squares, solid line� and 4 atoms
�blue circles, dashed line�. The lines are quadratic fits. Minima of
these fits serve as reference energies for the respective data sets.

KOLORENČ, HU, AND MITAS PHYSICAL REVIEW B 82, 115108 �2010�

115108-4



the iB8 AFM structure �space group P6̄m2�, which the fixed-
node DMC simulations predicted as stable above approxi-
mately 65 GPa.48 Calculations leading to this estimate used
single-particle orbitals provided by the PBE1w=0.2 functional.
This choice was based on prior investigations9,28 and on a
preliminary version of the results we present here. In the
following, we analyze in detail how appropriate the
PBE1w=0.2 orbitals are in this case and how sensitive the
transition pressure is to variations in single-particle orbitals
in the Slater-Jastrow trial wave function.

We return back to simulation cells containing 16 atoms,
partly because the orbital optimization appears more robust
in larger cells �Sec. VI� and partly because we already ac-
quired some data in the 16-atom cells in the course of our
earlier investigations. The pseudopotential used for oxygen
atoms is identical as in the MnO calculations �Secs. V and
VI�, the pseudopotential employed for iron atoms has the
same origin as the manganese pseudopotential and again re-
moves only neon-core electrons.38 The variational param-
eters in the Jastrow factor were found following the proce-
dure described in Sec. V, except that the optimization was
performed with the PBE1w=0.2 orbitals.

The optimal values for the exact-exchange weight w in
FeO are listed in Table I for experimental equilibrium vol-
ume V=20.4 Å3 /FeO as well as for two compressed states.
The optimal proportion of the exact exchange decreases with
compression, which is an expected phenomenon—the role of
screening increases as the bands widen and a larger fraction
of d electrons participates in chemical bonding.

In contrast to MnO, where B1 and B8 phases displayed
very similar behavior, the two investigated structures of FeO
differ noticeably at comparable volumes. Detailed data for
compressed FeO are shown in Fig. 3 to highlight the differ-
ences. Like in Sec. V, each total energy is obtained as an

average over eight k points. To facilitate comparison with our
previous study,48 energies corresponding to the PBE1w=0.2
orbitals are used as a reference. It can be seen that w=0.2
indeed represents a reasonable compromise value, since cor-
responding DMC energies lie within error bars from the true
minima.

In the case of the iB8 phase, the E�w� data are well de-
scribed by a quadratic function. In the B1 phase, on the other
hand, the functional dependence is asymmetric around the
minimum and a quadratic function does not provide a satis-
factory fit. To locate the minimum for Table I, we used an
alternative fitting function E�w�= �a+bw+cw2� / �d+w�,
which characterizes the calculated energies much better. Fig-
ure 3 shows that the energy raises rather fast when the
exchange-correlation functional approaches the pure PBE-
GGA. It does not come as a surprise since the Kohn-Sham
spectrum is metallic in the limit w→0, which is at odds with
experimental facts. All other phases investigated here �FeO
iB8 and both MnO phases� are insulating for all values of the
weight w, and hence even orbitals close to the PBE-GGA
provide reasonable trial wave functions.

The different behavior of the DMC total energies in the
B1 and iB8 structures causes the pressure of the transition
between these two phases to depend on the used orbitals. To
roughly estimate the variation in the transition pressure, we
assume that the energy-volume equations of state of the re-
spective phases only rigidly shift along the energy axis when
the exchange weight is varied. The equations of state corre-
sponding to the PBE1w=0.2 orbitals were calculated in Ref. 48
and the corresponding shifts can be extracted from Fig. 3.
When, for instance, the PBE1w=0.3 orbitals are used, the iB8
phase is raised in energy by approximately 0.1 eV compared
to the B1 structure, which leads to the transition pressure
increased to �85 GPa. When the PBE1w=0.05 orbitals are
utilized, the iB8 phase is lowered by approximately 0.2 eV,
which corresponds to the transition pressure of only
�30 GPa. Evidently, the B1 to iB8 transition pressure is
quite sensitive to the choice of the single-particle orbitals. Of
course, the DMC method provides a definite prediction as
long as the exchange weight is individually optimized in
each phase. The pressure 65�5 GPa derived in Ref. 48 re-
mains valid as the actual DMC estimate for the B1 to iB8
transition pressure since the energies obtained with the
PBE1w=0.2 orbitals lie within error bars from the minimal
energies �Fig. 3�.

VIII. OPTIMIZATION OF EFFECTIVE HAMILTONIANS

The optimization of not only the variational wave func-
tion but also of the effective one-particle Hamiltonian can be
considered in a broader context. The upper-bound property
of the fixed-node approximation offers a new opportunity for
finding optimal values of any parameters of such Hamilto-
nians in a consistent and well-defined manner. For example,
in DFT+U methods,21 the Hubbard parameter U as well as
the form of the double counting terms could be optimized in
a similar way as the exact-exchange weight in the presented
calculations. The optimized Hamiltonian can subsequently
be utilized for further calculations. We illustrate this on the
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FIG. 3. �Color online� The DMC total energy of compressed
FeO in two phases: B1 AFM-II at V=17.3 Å3 /FeO �red squares,
solid line�, and iB8 AFM at V=17.0 Å3 /FeO �blue circles, dashed
line�. The lines are least square fits as described in the text. Note the
different choice of reference energies compared to Figs. 1 and 2.
Here the zero energy for each phase is the value of the correspond-
ing fit at w=0.2.
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density of states of the iron oxide shown as a function of the
exact-exchange weight in Fig. 4. Note that for PBE1w=0.2,
that is, for the functional that we used as optimal for the
calculations of the equation of state, the single-particle spec-
trum exhibits a reasonable value of the gap of about 2.9 eV,
which is much closer to the experimental value ��2.4 eV,
Ref. 49� than either pure GGA or pure Hartree-Fock limits.
The key observation is that although the Hamiltonian was
optimized in the ground state, the excitations are clearly im-
proved as well.

In a more general sense, one could consider effective
Hamiltonians with more parameters and/or with more elabo-
rated content beyond the one-particle form, such as explicit
treatment of particle pairs, for example. The idea of employ-
ing the fixed-node DMC method could be of importance for
such constructions as the most accurate and explicitly varia-
tional method available at present.

IX. CONCLUSIONS

We have found that single-particle orbitals in Slater-
Jastrow wave functions represent a nontrivial variational
parameters for fermionic nodes in 3d transition-metal com-
pounds. When these orbitals are generated with the aid of
an exchange-correlation functional with variable admixture
of the exact exchange, the corresponding fixed-node DMC
energies differ by several tenths of an electronvolt per
transition-metal atom. These variations can translate to sub-
stantial quantitative changes in the phase diagram as demon-
strated in the case of iron oxide. Consequently, some form of
orbital optimization should be performed in order to confi-
dently predict relative stability of different crystal structures
and the location of corresponding phase transitions.

The optimal amount of the exact exchange providing
minimal DMC energies depends on the particular compound

and on the specific structural phase but it is generally close to
the value w=1 /4 deduced from comparison of the hybrid
density-functional theory to the Møller-Plesset perturbation
expansion.50 The corresponding functional PBE1w=0.25 is
commonly denoted as PBE0 where “0” emphasizes that the
exact exchange is incorporated without introducing any extra
empirical parameters.19 It is noteworthy that our calculations
arrive in the vicinity of this functional despite using a
method that has no obvious relation to the mentioned pertur-
bative arguments. Our quantum Monte Carlo simulations
provide yet another confirmation that the hybrid DFT indeed
provides an improved picture of the investigated compounds
compared to more conventional exchange-correlation func-
tionals �LDA and GGA�.
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APPENDIX: COHESIVE ENERGY OF MnO

We have calculated DMC energies of the MnO crystal in
three simulation cells containing 16, 24, and 32 atoms. The
results obtained with the optimal PBE1w=0.3 orbitals are plot-
ted in Fig. 5. Despite reoptimization of the Jastrow factor for
these orbitals, the result for the 16-atom simulation cell is
practically indistinguishable from the total energy shown in
Fig. 1 that was obtained with the correlation factor corre-
sponding to the PBE1w=0.1 orbitals. This observation indi-
cates that the localization approximation,36 which represents
the only mechanism for the Jastrow factor to influence the
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FIG. 4. �Color online� Density of states of FeO �B1 phase at
V=20.4 Å3 /FeO� from PBE1w calculations with varying w. Where
it is not obvious, the bottom of the conduction band is indicated
with an arrow.
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fixed-node DMC energy, does not introduce any sizable bias
into our calculations.

Figure 5 clearly demonstrates that the averaging over
eight k points performed for all shown energies successfully
suppresses differences in shapes of the individual simulation
cells and the remaining size dependence can be very well
fitted with a function E�N�=a /N+E�. The estimate for E� is
−120.203�0.001 hartree /MnO. The a /N term can be sub-
stantially reduced by techniques described in Refs. 32 and
33. One part of the proposed correction to the Ewald total
energy reads

�ES�k� =
1

4
2�
D

d3k
S�k�
k2 . �A1�

The static structure factor S�k� entering the expression is
defined as S�k�= ��0��̂k�̂−k��0� /N with �̂k standing for a
Fourier component of the electron density. The integral in
Eq. �A1� runs over a domain D centered around k=0 and
having volume 8
3 /�, where � is volume of the simulation
cell. The structure factor S�k� is evaluated along the DMC
simulation at a discrete set of points and then extrapolated
toward k=0. We show this extrapolation for the present case
in Fig. 6, where we compare mixed and extrapolated DMC
estimates, Eqs. �2� and �3�. The small-momentum behavior
of S�k� is found to be �k1.7 for the mixed estimate and �k1.9

for the extrapolated one. This variance originates in a limited
quality of our trial wave functions at large distances between
electrons—the Jastrow factor we use is restricted to zero for
interelectron separations larger than the Wigner-Seitz radius,
and hence the correct long-range asymptotics cannot be fully
captured. In the end, this deficiency is irrelevant since the
prediction of the extrapolated estimate is sufficiently close
to the exact asymptotics �k2 that translates to
�ES�k��1 /N.32,33 The total energies corrected according to
Eq. �A1� are shown in Fig. 5 together with the pure Ewald
data. The correction reduces the finite-size errors by 75%.

For calculations of individual atoms, we utilize the same
form of the trial wave function as we did in solids in order to
stay within the same level of theoretical description. Single-
particle orbitals for atomic calculations were obtained using
GAMESS code.51 Fixed-node DMC energies for the manga-

nese atom corresponding to several choices of orbitals are
listed in Table II. The difference between Hartree-Fock and
PBE1w=0.3 orbitals is negligible for our purposes since it is
smaller than the statistical error bar achieved for the energy
of the bulk crystal.

Variation in single-particle orbitals in the trial wave func-
tion for the oxygen atom does not lead to any appreciable
differences of DMC energies. To evaluate the cohesion of
MnO, we use the result quoted in Ref. 52, EO=
−15.8421�0.0002 hartree.
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